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Abstract. This paper is motivated by the question of whether dimension
analysis is a valid and practical method for the reduction of data in psy­
chology. The paper presents a short introduction to the analysis of chaotic
systems by the Grassberger-Procaccia algorithm. General aspects of this
method are demonstrated; we tested the limits of dimension analysis de­
pending on signal-to-noise ratio, length of time series, and resolution of
measurement. For this purpose, the Henon map was used as a basic model.
The Grassberger-Procaccia algorithm was also applied to a simulated time
series of group processes and an empirical time series of smoking behavior.
To compensate for artefacts induced by local correlations a revised dimension
analysis was performed with the group simulation data. Results suggest that
neither group simulation nor cigarette consumption data can be reduced to
a low-dimensional deterministic system.

1. Introduction

The-study of various physical and mathematical models has shown that even
simple nonlinear systems display very complex behavior within certain ranges
of their parameters. Time series of these systems may look like irregular ran­
dom series but actually are totally determined by only few variables, a phe­
nomenon referred to as deterministic chaos. Therefore, one may search for the
fingerprints of simple systems in observational data of noise-like complexity.
In the biological and social sciences analyses for chaotic behavior have been
applied, for example, to epidemiology (Schaffer & Kot, 1986), chronobiology
(an der Heiden, this volume), cardiac electrophysiology (Glass et al., 1986)
and, with special relevance to psychology,to EEG activity (Babloyantz, 1985;
Graf & Elbert, 1989).

We are basically interested in analyzing dynamical systems within clin­
ical psychology. The most convenient and thus most popular tool to find
such fingerprints of nonlinear systems is the evaluation of the correlation
dimension by means of the Grassberger-Proccacia algorithm (Grassberger
& Procaccia, 1983). We studied some aspects of its application analyzing
time series from three systems. The first one is the well-known analytical
Henon map. The second is a time series from a computer model simulating
group interaction. The third time series consists of about 1000 observations
concerning a person's daily cigarette consumption.
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2. An Introduction to Dimension Analysis of Chaotic Systems

Since a number of papers are available that give a good overview of the dimen­
sion analysis of chaotic systems (Simm et al., 1987; Mayer-Kress, 1987), we
start with a short introduction to dimension analysis with the Grassberger­
Proccacia algorithm.

The set of mutually independent variables necessary to describe the be­
havior of a system span the system's state space (the variable set of a
particular state of the system corresponds to one coordinate point in the
state space). In general, we do not know the number of variables governing
the system nor do we know the effective dimension of its state space. Instead,
we measured the evolution in time of a system by one or few projections of
the system's state space onto our measure quantities. Time series that show
no spectral structure, i.e, no clear-cut periodic pattern, may result either
from projections in noisy directions, or from projections of high dimensional
state surfaces, or from low dimensional but geometrically complex attrac­
tors. Dimension analysis will discriminate the latter from the two former
ones (i.e. discriminate systems which are governed by few, from those which
are governed by a large number of variables).

From the study of dissipative chaotic model systems we know that their
evolution in time - at least on chaotic time scales - is unpredictable due
to the exponential divergence of initially close trajectories. Nevertheless, the
possible states of the system do not fill up the whole volume of the ~tate

space but are confined to the so-called chaotic attractor - a generalisation
of the concept of state surfaces to which the evolution of a system is bound.
By describing the geometry of the attractor, dimension analysis can be one
way to recognize and to characterize a chaotic system.

2.1 The Generalized Dimensions

How can we describe an attractor (i.e. the ensemble of state points in the
state space of a chaotic system) by its geometrical properties? To begin
with, we assume sufficiently long time series of a chaotic system in all its
relevant variables. The information of all time series can be represented as
an ensemble of state points in a state space of dimension equal to the number
of relevant variables. Each point represents a state of the system at a given
point in time.

The probability distribution of the attractor points, i.e. the probability
of finding one out of N attractor points in cell /c under a covering n of the
state space by M(r) cells of radius r is

(1)

where N1c is the number of attractor points in cell /C. (Every point of the
state space lies in only one cell of the covering n.)
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This enters in the definition of the so-called q-dimensions which describe
the 'strange' geometrical structure of a chaotic attractor. The q-dimensions
can be seen as the moments of an expansion of the probability distribution
of the attractor points:

I ("M(r) q)
D = _I_lim og L...'\:-1 p.\: .

q q - 1 r-O log(r)
(2)

(3)

The Hausdorff dimension Do can easily be seen to correspond to the standard
dimension for n-dimensional surfaces. It can be shown that in general Dq+l ~
D q (Hentschel & Procaccia, 1983).

2.2 The Correlation Dimension and Its Approximation
by the Grassberger-Proccacia Algorithm

For practical purposes we are not able to calculate all q-dimensions (espe­
cially for large q) because of the computational burden or lack of sufficiently
long time series. For D 2 a practical algorithm to approximate the above
definition in (2) has been suggested by Grassberger and Proccacia. From (2)
the D2 or correlation dimension for a dense covering n with r ..... 0 is written

I ("M(r) 2)
D I· og L....\:-1 p.\:

2 = im
r-O log(r)

. .
where p~ is the probability that two arbitrary points Pi, P; are in cell k. .

2:~;) p~ is the probability to find these points in any cell of the covering.
This is approximately the probability C(r) to find two points Pi, P; with
distance less or equal to the diameters of the cells r

M(r) 1 N N __

I: p~ ~ C(r) = J~oo N2 I: I: e(r- IPi - P; I) . (4)
.\:=1 i=l ;#=1

where e is the Heaviside function
for 0 ~ :ll < 1
else

Finally, the correlation dimension 1/ is defined as

D
2
~ 1/ = lim 10g(C(r))

r_O log(r)
(5)

2.3 The Reconstruction of the Attractor from One-Dimensional
Time Series

A prerequisite for the application of the Grassberger-Proccacia algorithm
is that we know the attractor points in state space or at least are able to
reconstruct the attractor in a way that preserves its interesting geometrical
structure (Packard, 1980; Takens, 1981).
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For a given dimension of the state space, state vectors of that dimension
have to be constructed from the time series. Since these vectors should reveal
the effective dimension of the attractor, which is smaller than the dimension
of the embedding space, the components of the vector should reflect this
in a correlation among them. Several procedures for the construction of
the vectors have been proposed. We refer to the one called time delayed
reconstruction. The time series of length n yields (n - mr) m-dimensional
vectors (:Z:i' :Z:i+'T1 :Z:i+2'T1 .... , :Z:i+(m-l).,.)'

The choice of the delay parameter r is important. A too small delay
with respect to the characteristic correlation length of the time series com­
presses the reconstructed attractor by inducing a high correlation among the
components of the vector of the state point, thus yielding a dimension smaller
than the real one. A too large delay decouples the components of the vector.
The reconstruction then tends to fill up the embedding space resulting in
a dimension of the reconstructed attractor corresponding to the number of
components of the vector.

2.4 The Evaluation of the Correlation Dimension from C(r)

For a genuine embedding of the attractor (dimensions of the embedding
space greater than the dimension of the attractor) the correlation dimension
v = liJIlr_o lo'o~!r) should be independent of the dimension of the embedding
state" space. In practice, C(r) can only be calculated down to a small r I be­
cause of the limited resolution of experimental data. Also, the finite length
of the time series accounts for an incomplete and inhomogeneous reconstruc­
tion of the attractor and causes a noisy and unreliable evaluation of C(r)
for r < rl' The correlation dimension will show up as a constant ratio of
log(C(r)) to log(r) across a range of embedding dimensions and a range of r.
To evaluate C(r) for a given r and a given m-dimensional reconstruction we
compute the mean over all attractor points of the number of their neighbor
points with distances less than r. Variations of C(r) for different locations
on the attractor are neglected.

In the case of reconstructions with large time delays, strongly correlated
neighboring points of the time series should be given attention, since they will
be neighbors in state space as well. Thus they induce spurious correlations
and have to be carefully discarded in the evaluation of C(r).

3. A Simple Analytical Model: the Henan Map

We examined a 1500 point time series from the two-dimensional Henon map
given by the equations:
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Fig. 1. Time series of Henon map

The plot in Fig.I shows clear oscillations around a mean value, which appears
to remain constant throughout observation (stationarity). The oscillations
have various amplitudes and give no evidence of regularity.

Fig.2 shows the results of a FFT (Fast Fourier Transform) of this time
series. By this method, the signal is decomposed to harmonic oscillations
at different frequencies. The contribution of each individual wave to the
signal is measured by its power. The resulting power spectrum confirms that
the frequencies of sine waves are not equally probable - waves of frequency
around 300 and between 900 and 1000 (in units of the inverse sampling-time)
are represented more prominently; still the power in between these frequency
bands does not decrease significantly as it would in a quasiperiodic system.

The autocorrelation of the time series decreases considerably after a
few iterations of the Herron map. In order to reconstruct phase space with
the method of time delays, we chose as a rule of thumb the first minimum
of the autocorrelation function as suitable. In our case a phase space was
reconstructed using a lag of 2. In two-dimensional phase space (Fig.3) the
well-known structure of the Henon attractor appears as expected [i.e. the re­
construction procedure yields the same structure as in a phase space spanned
by the analytical dimensions of the map given in (6)).

The Grassberger-Proccacia method was applied with embedding dimen­
sions ! ~ m ~ 5 (FigA). Quite clearly slopes converge to a value of around
1.25, which is consistent with the dimension 1.26 given in the literature.
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Fig. 2. Power spectrum of Henon time series
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Fig. 4. Slope vs log(r) for Henontime series with embedding dimensions
2-5, T = 2

This value appears as a plateau in all curves (except for embedding dimen­
sionrn = 1) within the significant range of rj it is evidently not dependent
on m as it would be in the case of white noise.

4. Evaluation of the Correlation Dimension
Under Different Constraints for the Time Series

4.1 Experimental noise

Pure noise has no attractor; it fills up the state space. Thus, the correla­
tion dimension of noise just measures the dimension of embedding space. In
contrast, the correlation dimension of any reconstructed attractor is indepen­
dent of embedding space (at least for embedding dimensions near that of the
attractor). If noise is added it will tend to smear the attractor in embedding
space. As a result the correlation dimension will couple to the embedding
dimension. The results of application of noise to the Henon map are shown in
Fig.5. A noise level of 10% destroys the constancy of the correlation dimen­
sion for different dimensions of the embedding space, making it impossible
to estimate safely the dimension of the attractor.
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Fig. 5. Slope vs log(r) for Henon time series (10% noise superposed) with
embedding dimensions 2-5, r = 2

4.2 Length of the Time Series

The length of the time series and the dimension of the embedding state space
define the resolution of the attractor reconstruction. As a general rule (see
Mayer-Kress, 1987, for a derivation from error estimates on C(r) and the
procedure to find the range and the value of constant slope) the length of
the time series should be at least n = bm where m is the dimension of the
embedding space and b the minimal tolerable resolution in an coordinate
direction. For the Henon map with dimension =:: 1.25 it should be at least
m = 2 and b = 10. In Fig.6 a dimension estimate for n = 100 corresponding
to the above minimal length is shown. For m =2 a plateau is still visible, but
especially for higher embedding dimensions the estimation of the correlation
dimension becomes difficult.

It should be noted, though, that in order to observe convergence larger
embedding dimensions must be considered as well. The lag r that was chosen
for reconstruction further increases demands for long time series. As was
stated in Sect. 2.3, a time series of length n yields (n - mr) attractor points.
As an example, when the attractor is reconstructed with a lag of 5 and C(r)
is tested up to embedding dimension 10, it takes 150 time series points to
reconstruct 100 attractor points!
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100 data points) with embedding dimensions 2-4, T = 2

4.3 Insufficient Resolution of the Time Series

The resolution of the data from the time series determines the resolution of
the reconstructed attractor in the embedding state space. Too Iowa resolu­
tion constrains the evaluation of the correlation to large radii thus making it
impossible to measure the filigrane local structure of the attractor. In Fig.7
the resolution of the Henon time series has been diminished to only 6 bins.
This simulates the effects of measuring the Herron time series with a 6 point
rating scale. As can be seen, the plateau in the slope versus log(r) plot has
disappeared (with n= 1500 as above).

5. Two Time Series

5.1 Simulation of Group Processes

Figure 8 presents a time series from a simulation system designed in order to
model group processes. The simulation computes 'social distances' between
members of a group; these may be interpreted like a sociogram (Moreno,
1953) or a 'sculpture' (Schweitzer & Weber, 1983). Further descriptions are
given by Tschacher et al, (this volume). The time series maps the spacial ex­
pansion of a configuration of eight 'persons' by the sum value of all persons'
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distances from a reference point. This value varies from iteration to itera­
tion. In the time series analyzed here model parameters were set in a way
corresponding to 'conflict! between group members - the simulation takes
a strange course and does not approach any of several stationary states as
usual. 'Persons' form a close turbulent unit instead, occasionally building up
formations that resemble 'gliders' in cellular automata.

A total of n = 1800 values from this process (corresponding to 1800
iterations of the simulation) were sampled for analysis. The series plotted in
Fig.8 does not appear to have any recognizable pattern.

The power spectrum is given in Fig.9. Several peaks can be observed,
but the spectrum in between is continuous. Thus, the system is not a mere
superposition of several different oscillations, even if some oscillations are
represented more. As the signal is neither periodic nor white noise, it might
be chaotic with some fractal dimension. In order to test for chaos, phase space
was reconstructed. To establish coordinates we determined the first minimum
of the autocorrelation function which yields an appropriate time delay of
T = 40 [i.e. phase space is spanned by coordinates :z:(t), :z:(t + 40), :z:(t + 80)
etc.). The system in 2D phase space is presented in Fig.10.

Fig.ll gives the slopes of the Grassberger-Proccacia method. Any re­
gion of constant ratio of the log-log plot of the correlation dimension C(r) to
radius r should show up here as a horizontal plateau of slope curves irrespec­
tive of embedding dimension. Although the plot is not as clear as in the case
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Fig. 9. Power spectrum of simulation data
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of the Henon map, a plateau of this sort can be derived from the diagram.
This points to a fractal attractor of dimension u == 1.6. But peculiarly, the
plateau is established only from embedding dimensions m > 12. The fact
that convergence is not recognizable in lower dimensional embeddings casts
doubt on this result (see Sect. 2.4).

Therefore a revised dimension analysis was employed in order to check for
artefacts induced by local correlations. For the computation of the correlation
C( r) for each attractor point all points with time distances less than r in the
time series were discarded. This procedure yields Fig.12. There is no common
plateau left in the slope versus log(r) diagram. Evidence for a low dimension
has disappeared. This indicates that the correlation dimension derived from
the Grassberger-Proccacia algorithm was largely due to local effects caused
by points on the same segment of the trajectory; the global structure of
the hypothesized attractor given by many foldings of the trajectory was not
grasped by the standard method.

5.2 An Empirical Time Series of Smoking Behavior

The time series depicted in Fig.13 comprises 1555 observations of an individ­
ual's cigarette consumption. Being trained in clinical psychology and behav­
ior therapy the 28-year-old male student took these daily counts to monitor
his smoking behavior. Fig.13 indicates that major periods of the present se-
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Fig. 12. Corrected slope vs log(r) for simulation data with embedding di­
mensions 1-20, r = 40
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ries appear to have means different from the means of other periods. There
is a distinct level shift after approximately 1100 observations. Though sta­
tionarity could have been accomplished by appropriate transformations such
as differencing, i.e. the calculation of successive changes in the data values,
we preferred to restrict our statistical analysis to the initial 1000 observa­
tions and ignored the subsequent data. The power spectrum of the resulting
time series given in Fig.14 is smooth and therefore all cycles are assumed to
have occurred at an approximately equal intensity. Thus the FFT gives no
indication of any hidden periodicity or regularity inherent in the time series.

With respect to the identification of an optimal time delay T for the
reconstruction of an appropriate attractor we again determined the first local
minimum of the autocorrelation function, in the present example of T = 4.
Provided that the corresponding embedding dimension is greater than the
correlation dimension any range ofr with a constant ratio oflog(C(r)) versus
log(r) should show up as a common horizontal plateau of various slope curves
in the slope versus log(r) diagram (Fig.16). However, this diagram clearly
indicates that there is no such common plateau. Moreover, slopes apparently
increase with higher embedding dimensions, consequently the points within
successive reconstructions of the attractor exhibit a noise-like pattern.

In general, cigarette smoking is viewed as resulting from the complex in­
teractions of environmental, physiological and psychological processes (Licht­
enstein & Brown, 1982). If behavioral time series like the present one could
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be reduced to a finite, possibly small number of variables this could be of
considerable relevance for clinical theory and therapeutic practice. But this
is not yet supported by our data.

6. Options and Restrictions of Dimension Analysis in Psychology

The options of this method have already been stated in Sect. 1: it is pos­
sible to evaluate seemingly erratic behavior by determining the dimension
of the underlying dynamical regime (if there is any such regime of just a
few variables). In psychology, the multicausality of mental and social events
has often been emphasized. This is accepted as the reason for either inter­
preting field data massively or controlling all circumstances by laboratory
methods. In either case, complexity is reduced rather artificially. On the
other hand, self-organization theory has shown in many instances that un­
der certain conditions very complex systems are governed by but a few order
parameters. These conditions seem to be met by most psycho-social systems,
so that self-organizing processes should be expected in the field of psychol­
ogy, too (Schiepek & Tschacher, this volume). Dimension analysis may be a
suitable method to detect self-organized systems in apparently nonperiodic
time series generated by psycho-social systems.
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Even some basic assumptions about the etiology and maintainance of
behavior mapped by the time series may be put to test: if our observations
reflect an internally controlled process unfolding no matter what environmen­
tal influences exist at the time, a simple attractor or an attractor of a finite
correlation dimension should be effective. This result would be compatible
with psychological theories stressing cognitive 'inner' dynamics as primary
causes of behavior. On the other hand, if behavior is to a high degree steered
by 'external' control parameters, the fluctuation of these parameters renders
any determination of the system's characteristics impossible. The time series
then maps many instantiations of quite different systems, so that no overall
values of attractor dimensions can be found. In order to map the system, a
rigorous control of environmental parameters should be accomplished. The
smoking behavior data rather point to this conclusion.

But methodological restrictions also have to be considered following the
above discussion of the influence of noise, length of the time series, and res­
olution of data points. From the discussion some minimum quality standard
for empirical time series must be achieved. The resolution of the variable
measured and the length of measurement are independent indicators of data
quality. They are also limiting factors, i.e. insufficient resolution cannot be
remedied by a longer time series and vice versa. For research in psychology,
high resolution of measurement is a demand which is quite difficult to satisfy.
It will most certainly not be accomplished by the application of usual rating
scales since only very simple structures can be mapped in a low-grained, dis­
crete phase space - fractal attractors for one are not simple structures. The
implementation of dynamical methods in psychology is largely a question of
finding and measuring appropriate observables (Tschacher, 1990).

All of the factors listed in Sect. 4 severely limit the applicability of di­
mension analysis, maybe even to the point that while there is evidence of
complex low-dimensional homeostatic mechanisms theoretically, the accom­
panying attractors may never be revealed empirically. Still, in our opin­
ion it may prove worthwhile to test further time series from psycho-social
systems, bearing in mind these restrictions. To this end observations of
(socio-)physiological variables and variables of spacial behavior in restricted
settings (such as therapy settings) may be useful.
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